SPECTRAL THEORY OF CONCENTRATION OCF DISPERSE SYSTEMS

Yu. A. Buevich

A continuous function of coordinates and time is introduced to describe the random field of
volume concentration of a monodisperse system. The conditions are clarified under which
the function ensures a most detailed description, consistent with a physical-intuition descrip-
tion,of the local values of concentration. The variance of this function is computed, and an
expression is obtained for the spectral density of the random deviation of the true concen-
tration from its mean value. Some quantities also obtained in a similar manner describe
the concentration of individual components of the dispersion phase in a polydisperse system.

The initial stage in the statistical analysis of fluctuating concentrations of components of a polydis-
perse system consists in obtaining sufficiently representative expressions for the distribution of the num-
bers of suspended particles of various types in a specified volume of the disperse system. A solution to
this problem for rarefied systems in which individual particles can be considered as indistinguishable,
noninteracting, and statistically independent particles was already given in the classical works of Einstein
[1] and Smoluchowski [2] (see also the exposition of colloidal statistics in [3]). A sound basis has subse-
quently been provided for the methods used in the above-cited articles by introducing additive measure on
the set of elementary events for an individual particle and by a subsequent functional integration over the
product of measures for different particles [4].

A generalization of Smoluchowski's combinatorial method to include concentrated monodisperse sys-
tems whose particles are, as previously, indistinguishable but need not be statistically independent was pro-
posed in [5]. In particular, an expression was obtained in [5] for the probability W(n,) of finding np par-
ticles each of volume ¢ in some volume A selected in a sufficiently large volume V occupied by the dis-
perse system:

W (na) = CHAVA (L —w) 4™y =y / Ny = const (0.1)
where ny = const isthe total number of particles in the volume V.

If the particles of a disperse system travel independently, that is, if one considers the fact of finding
a particle in the volume A as an event independent of the behavior of other particles and which is only deter-
mined by the total number of particles already found in A, then one has

Pa A Py
Ny=V >, Ny=4A -~

, nv<<Ny, na<<N, (0.2)

where p, is the volume concentration of the system in the densely packed state.

The larger is nj and the bigger the volume A compared with the mean specific volume of a particle
op = o /p, where p = vp, is the mean volume concentration of particles in V,the more accurate becomes
the distribution (0.1). From (0.1) one can easily obtain for np > 1, Ny »1, v =const the Gaussian distri-
bution

1 ox —(nA——-wVA)2
(20N v (1 — v)]"/2 p iV v (1 —w) (0.3)

W(ns) =~
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The first two moments of the distributions (0.1) and (0.2) are the same. We have
{Bnady = {ng —vNa) =0, (dna)*> = {(na— YNa)*>=v({1 —v) Ns 0.4)

It is not difficult to see that the nonfulfilment of the assumption of the independence of the behavior
of separate particles has no effect on the form of the distributions (0.1) and (0.3). Indeed, let the particles
travel in groups each consisting on the average of ng particles and such that the behavior of particles with-
in a group is completely correlated though different groups are statistically independent. The method used
in [5] is also applicable in this case providednot separate particles but separate groups are considered. In
this case one should understand, in particular, by ny andn A the number of such groupsin the volumes V
and A, respectively, and

Ny=VZE Ny=4-Pr (0.5)
g ngS

Hence in the particular case of ng=1.one obtains the relations (0.2).

A serious shortcoming of the theory lies in that the volumes must be measured discretely and be
multiples of the "minimal® volume n_o/(pxA). Therefore any volume A can only be described with a rela-
tive error of the order of 00 /{pgA), which limits the applicability of the theory when dealing with numbers
of particles in small volumes. With an unbounded increase of A this error ceases to be of any importance;
then the relations given above become accurate.

In the general case it is necessary when analyzing a disperse system within the framework of the
mechanics of continuous media to pass on from the discrete method of describing concentration and other
quantities which characterize the state of a disperse system to describing them by using some continuous
random functions of coordinates and of time (a phenomenological discussion of a number of problems which
have a bearing on our problem can be found in [6]). Some concepts pertinent to such transition were pre-
viously given when statistical hydrodynamics of disperse systems was formulated and random motions in-
vestigated of the particles and of their fluid phase,whose appearance was in point of fact conditioned by the
concentration fluctuations (see, for example, [7]). By employing a more rigorous analysis based on a num-
ber of methods developed in statistical physics of fluids and dense gases the relations previously used in
[7] can be made somewhat more exact.

It should be emphasized that all our subsequent considerations apply to systems in the "equilibrium®
state in which all the macroscopic characteristics which describe the state remain constant within the
volume V. The analysis is carried out by using a system of coordinates in which the dispersed phase is
permeated by the fluid flow and is on the average in the state of rest.

1. Instantaneous Volume Concentration of Particles. One defines first the function

EA(x)=p-{-§A(x)=—%S‘is(x’)d(x’-x)=v G,ZA (1.1)

in which the integration is over the volume A, x is the radius vector of the symmetry center of the volume,
and the function & (x) is equal to unity in the interior of the particles and zero outside them. I can easily
be seen that the function £, (x) is continuous and differentiable.

By using the expression (0.4) and the definition (0.5) of the number Ny a representation for the
variance of £ A (%) is obtained from (1.1) which, in view of what was said above, is valid for (ny}) > 1:

= (1) (1.2)

{n A> P

whence it is seen that statistical characteristics of § A (x) depend to a considerable extent on the size of
the volume A appearing in (1.1). In fact, when deriving (1.2) it was assumed that ng=1.

In particular, for {(n ) —~« the function £ A(® approaches theconstantp; for (np) — 0 its variance
increases without bounds; this does not make sense from the physical point of view. Therefore the question
now arises as to what volume A should be selected in (1.1) for a physically adequate definition of £ 5 (%).

To answer this question let us consider a realization of a "homogeneous" distribution of particles in space
to which a function £{X corresponds identically equal to its mean value p. In such state the particles are
distributed in a regular manner and are found, for example, at the nodes of a regular lattice. To assume
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that such states do exist seems absolutely indispensable at least within the framework of the statistical
theory of the type under consideration; for comparison with an analogous case in the statistical physics of
fluids see [8].

One assumes, for simplicity, that all particles are of the same shape. Then if is natural to think
that the volume A appearing in (1.1) is similar in shape to the volume of a single particle in a system with
a specified type of regular packing. It is required that the quantity £ A (%), where %, is the center of grav-
ity of any particle, be exactly equalto p. If A = 0,then it is obvious that the volume A is mainly positioned
within a particle so that §A (Xp) > p and perhaps £, (X)) > px. The latter, however, does not make sense
from the physical point of view since £ p (%) should not exceed the value p 4 which corresponds {o the
densely packed state. If A > 0, A< 0p,thenagain{, (%) >p. Finally, let A > 0,. Since the particles are
regularly positioned,it is clear that if the volume A exceeds only slightly op, then within this volume a
unique particle can be found with center at the point x, such that £,(x) < p. It can thus be inferred that
the volume A should be equal to the average volume of a particle in the system Tp-

One can also select A > 0 ; then the quantity £, %) is identical with p. However, this is a much
more crude description of the local concentration values of a monodisperse system than the most detailed
possible description which corresponds to the equality A= 0,. For A <o, the function £ 5 (x) defined in
accordance with (1.1) has no straightforward physical sense.

The shape of the volume A is determined by the form of a particle average volume [8] and depends
first of all on the form of the particles and also on the type of their regular packing. It can be determined
from the equality of &(x) to the quantity p when the point x is displaced from the center of the particle
X,. In actual disperse systems the packing of particles is usually chaotic; moreover, different particles
can be of different shape and can be differently oriented in space. Therefore, for simplicity one can
consider the volume A as being a spherical volume.

Even for A = 0, the concentration of the disperse system is described only locally by the function (1.1).
Indeed, it is not difficult to see that the quantities §A(Xj)s where X (=1,..., ny) are the radius vectors of
the particlecenters and are equal to or exceed p not only for a homogeneous but also for any distribution of
particles in space even if the system is locally rarified in the neighborhood of some particles. To eliminate
this disadvantage the continuous function p(x) =p (t;, x)describing the local volume concentration of a dis-
perse system at a time instant will be defined with the aid of the relation

p(x)=p -+ 8p(x) = —},—gﬁa (x' —x)dx’
A = 5,, {(Bp (x)®> = CA* (D

(1.3)

The use of the function (1.3) corresponds to a perfectly natural notion that from the macroscopic
point of view any quantity describing a local state of a disperse system can only be defined with an accuracy
up to the mean volume of an individual particle. The relation (1.3) represents one of the possible formal
definitions in statistical physics [8, 9] ofthe instantaneous specific volume of a particle with subseript j

0; = o0/p (x5, j=1,.., ny (1.4)

Thus, the mean specific volume of a particle plays the part of the least "physically small" volume ofa
disperse system which can be considered within the framework of the continual theory.

The variance will now be calculated of the function p(x). Tothis end, a large volume A <V, (np) > 1.
is considered consisting of n, specific volumes (1.4) where the space distribution of particles at the in-
stant t; is completely determined, as stated above, by either the quantities ojor the quantities p(x:). Of
course, for statistically independent particles these quantities can be regarded as independent. For (np)y>»
1 one has the equality

s6n 1 .
6PA=—I4’é—z‘W269h 8o; =p(x) — 0, 1<i<<na (1.5)

The quantities Jp; satisfy all the assumptions whose fulfillment makes the central limit theorem of
the probability theory valid for their sum. Consequently, it can be asserted that for (n Ay > 1 the quantity
8pp bhas a Gaussian distribution whose variance is equal to the sum of equal variancesof the random com-
ponents &pj /nA in (1.5). By using the relation (0.3) the distribution can be written as
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" (ny> }’” —<ny> Bpy)?
W (dpa) =~ {Wp‘m P —pTea) (1.6)

Here, as in (0.3), the exact equality has been replaced by an approximate one because the obvious
constraints —p= Spp= px ~p or 0 = np = Np have been ignored. This is quite admissible in view of the
smallness of the relative fluctuations for {np)>1. From (0.4), (1.5), and (1.6) the formula

CBPYS = <D = 2 (1 — p /pg) (1.7)

is now obtained and will be used later when one ﬁroceeds to a spectral description of concentration fluctua-
tions of a disperse system. Formally, one could have obtained (1.7) from (1.2) and (1.5) using that (np) =1.
However, the latter contradicts the assumption (np) > 1for thevalidity of the relation (1.2).

2. Partial Spectral Density of Concentration Fluctuations. The quantity 6p (%) of (1.3) will now be
considered as a random function of a space point; it is represented in the form

8p (9 = {eitodz, (2.1)

where the integration is over the entire wave space and dz,, isthe spectral measure of the field 3p{x}. To
calculate the spectral density

@, . (k) = lim {dz,*dz,) (dk)™* @k —0)

the methods developed in statistical physics [9, 10] will be employed. Following [10] the "detailed" concen-
tration of a disperse system and its Fourier {ransformation are represented in the form

V@ =g R8x—x), Fv@=32N q<i<ny) @.2)

In view of the equivalence of particles and statistical homogeneity of the space, the values of » (X
at different points can be considered as statistically independent, that is, the random field 6 (%) =y (%) ~
{v), {v) =(v(®) is white noise. Clearly in this case &, , (k) =®= const,which follows, for example,
from the second relation (2.2). From our previous considerations, however, it becomes clear that the de-
scriptionof agsystem with the aid of the function v (x) within the framework of a continual theory does not
make much sense, one of the reasons being that its variance does not assume any finite value. This diffi-
culty can usually be avoided by using a method proposed by Massignon {2, 10]. Namely, the §—functions in
the sum (2.2) are replaced by other distributions in the sense of Schwartz; they can be either functions or
measures with the property

(o@—m)ax=1
v
From the physical point of view this indicates that the position of the center of any particle can be

determined with an accuracy up to a volume o, within which @ {r) is different from zero. In statistical
physics one employs, as a rule, for ®(r) some smooth function which decreases sufficiently rapidly as
r— « (Massignon himself used the Gaussian function [9]). The rate of this decrease as well as the an-
gular dependence @(r)(its deviation from some isotropic function) is determined by the type of intermolec-
ular interaction in the fluid or solid system of many particles andby a short- or long-range order which
is present in it.

In view of chactic packing of real particles in a disperse system the function @ (r) can be consideredas
an isotropic function ofr= |r|. To be specific ® (r) will be expressed in terms of a Heaviside unit step
function, that is, we set

i, z>0

@(r):%Y(ao—-—r), Y (z) = 0, <0 co——*%,naos 2.3)

The function
b =5 AV @[x—x) G<i<my) @24)
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which is obtained from v (%) in (2.2) by replacing the 6 -functions by the functions @ of (2.3), is subsequently
identified with p (%) of (1.3). Using the relations (2.1), (2.2) and employing a standard approach [10} for
determining &, , (k) by @y, (k), one obtains the relations

ey = (@, ) dk

Fao — ko cos k.
Do, (k) = VSemY(%——r)dr_BCDG m_ao(las_;w

(2.5}

(@ =const)

Comparing the variance p {x) computed from (2.7) and the quantity (1.8),one obtains the expression

A e

The volume o, characterizes the degree of "coarseness" [10] of the particle system under considera-
tion, that is, it describes the size of the minimal *cell® in space and must be the error with which various
local properties of the system can be determined; the latter possess a physical meaning from the macro-
scopic point of view. Hence it follows directly that the volume o, must be equal to the volume A =0 which
appears in the definitions (1.1) and (1.3). This assertion represents one of the possible hypotheses with
regard to the quantity ¢.

It would have also been possible to replace the expression (2.2) for v (x)by a more exact formula in
which the &(r) were correspondingly replaced by the functions o~le(r) introduced in (1.1) and then to
attempt to identify p(x) with the sum thus obtained. The latter is equivalent to admitting that o, =0, so
that e, in (2.3) and (2.4) is identical with the radius ¢ of a sphere whose volume is equal to o,

Finally, it is admissible to consider a priori ¢; as a measure of volume within which one may find the
center of a particle for a given packing of particles in space, that is to identify o, with the mean free
volume o7 in the system. The free volume can also be represented approximately by ¢ ~ oy —0, , where
O = 0 /pe is the minimal value of o, attained in the state of dense packing [8]. Some relations implied
by these hypotheses have already been considered by the author in a number of articles.

To find an adequate definition of the quantity o, the fluctuations of the number of particles are again
considered in a large volume A, For simplicity it is assumed that the volume is a parallepiped with
sides I (j=1, 2, 3). Using (2.1), the deviation of the number of particles n, in the volume from the mean
value (n,)can bewritten as

ik

3 £
dng =—i—gép(x)dx =%S 1I e—mf—‘—ﬂ—dzp 2.7)

ik
m=1 m

Employing the familiar properties of the representation (2.1), the relation

3
(Onal> = <00 @ x> = 2 { TT (A=55mm) o,,, (9 dk

m=1 (2.8)
Go p? p\ 1 —-cos kmzm “sin kag — kao cos kao
=3‘ﬁ?<“r)m( R
is obtained from (2.5)-(2.7).
By selecting [ 1y, such that [, > a, one obtains from (2.8)

S0 f p 2.9
(@n)® = (1 ———> hlaly = 5-p (1 -—-p-:) nyd {2.9)

Finally, comparing the above relation with (0.4), one obtains
0y = 0p~l= 0,, ay = ap™ (2.10)

Instead of smoothing the "detailed™ concentration (2.3) by ®spreading about® each particle over the
mean specific volume,the spectrum of concentration disturbances could be cut off from its short-wave re-
gion [9, 10]. In fact, this procedure is equivalent to the Massignon method,the difference being that it is not
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in the real but in the wave space. On the other hand, it is equivalent to applying the familiar method of
Debye for determining the number of harmonics of the Fourier representation of the random quantity dp(®)
from the number of degrees of freedom of the multiparticle system under consideration. In this case the
integration over the wave space is, in fact, replaced by the addition over the Brillouin zone for the system.

By introducing the critical wave number k, at which the cut off of the spectrum is effected we can
write

Dy (k) = O Y (kg — ) 2.11)

The constants k;, and &' are determined from the previous conditioné, that is, by demanding that the
values of the variances of the quantities p (%) and np be equal to those calculated above. In this manner one
obtains

O =2 (1-2), h=(S) L= () (2.12)

IR kP Pe 2 ao 2 a

The functions (2.3) and (2.11) represent Fourier transformations of each other; in our theory both
these functions are equally worthy ofbeing considered; this is due to the arbitrariness in the choice of the
smoothing function ®(r). In fact, the form of &(r) should be determined by using the properties of the
packing of the particles as it is done, for example, for crystal lattices. However, in disperse systems the
actual packing of particles does not belong to any specified type,and to be able to apply this method statisti-
cal weights of packings of various regular types must be found. ¥ is not known at present how to solve this
problem; therefore preference for either the function (2.3) or (2.11) would signify an excess in the preci-
sion of the theory. However, in specific calculations preference can be given to the considerably simpler
function (2.11).

It is now assumed that the behavior of the neighboring particles is correlated and that n, > 1. The
arguments used when deriving the relations in Sections 1 and 2 remain valid also in this case provided that
separate particles are replaced in our considerations by separate groups (packets) of particles, each con-
sisting of ng particles. In particular, the basic form of the formulas (1.8), (2.3}, (2.11), and others re-
mains the same even for-ng¢ 1; however, the expressions for A, o, a,, andk, obtained previously shouid
be replaced by

Amo="L o= a(';—g)’ o = (2 ‘)‘/’i @.13)

[4 2ng a

The reason for the increase in the volumes A and ¢, and in the quantity a, is quite obvious since
statistical links now appear between the particles; in particular, @, can be considered simply as a charac-
teristic linear size of a packet or a particle "correlation radius.” The corresponding decrease in k;, de-
seribesthe reduction in the system Brillouin zone, that is,a reduction in the number of harmonics in the
Fourier representation of the random field 8p(x). The latter is related to the reduction of the fotal num-
ber of translational degrees of freedom of particles when they are combined into packets.

Basically, the quantity n, depends on the physical properties of the phases of the disperse system and
on the type of their mean motion; the latter is not known a priori but can be estimated within the framework
of statistical hydromechanics of disperse systems (see, for example, footnotes in [7]).

3. The Dynamics of Concentration Fluctuations of a Monodisperse System. We have considered so
far only the characteristics of a random field 6p(x) at some fixed instant t). Now the change of the field
in time will be investigated; this is absolutely indispensable in studying the internal structure of chaotic
local motions (pseudoturbulence) of disperse systems.

The characteristic time of a change in the random field T, is of the same order of magnitude as the
external time scale T of the pseudoturbulent motion by which this change is caused [7]. Therefore, to de-
scribe the dynamics of concentration fluctuations one does not find it convenient to apply the standard diffu-
sion equation in the Fick form,which is only valid in the limit T /T — <« ; the problem now arises of finding
a generalized diffusion equation which would permit the investigation of diffusion processes with a charac-
teristic duration t > T.
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There are various methods for obtaining such an equation, and one can subdivide them into two kinds.
The methods of the first kind reduce to having the diffusion coefficients dependent on t so that for t — e
they approach the familiar stationary diffusion coefficients. These methods are based on variances of dis-
placement of an individual particle and are characteristic for the theory of turbulent diffusion, the theory
of Brownian motion for small t, ete. In our case it is not expedient to apply this approach since it is diffi~
cult then to use the correlation theory of stationary random fields for describing p(t, ®.

The methods of the second kind reduce to adding terms containing higher time-derivatives to the Fick
equation. However, there is no method available which would enable one to estimate accurately (even inthe
simplest cases) the constant coefficients which appear in these terms. It is obvious that the most rigorous
method for deducing a general diffusion equation would involve the introducing of distribution functions
for the coordinates, the velocities,and the accelerations of all orders for the suspended particles; it would
also involve proceeding from the continuity differential equations for these functions in the corresponding
phase space to finite-difference equations [11]. The main disadvantage of such an approach lies in that one
has to compute all moments of the distribution functions for the velocities of the particles.

There exists another feasible approach which consists in considering the continuity equations for the
last functions only; in the latter the details of disturbances suffered by the moving particles are taken into
account phenomenologically by introducing concentrations of "scattering centers” and effective scattering
cross section or by mean lengths of free paths of the particles between two consecutive scatter reports.
A diffusion equation obtained in this manner was already employed in [7]. Finally, one can also consider
a simple simulation of a random walk of a particle in space [3] assuming that the displacement velocity of
the particle is finite {this problem was analyzed in detail in [12] for a single-dimensional walk). An ele-
ment of arbitrariness is also contained in these methods when determining the definite values of the veloc-
ity of the walk, of the characteristic duration of motion without a change in its direction, etec. All the de-
sceribed methods lead to the diffusion equation (3.1).

The diffusion equation of particles is written as

Pp G (08 8 3.1

In the above D is the tensor of the diffusion coefficients of particles,which can be calculated within
the framework of the statistical hydromechanics of disperse systems [7], and the quantity T, satisfies the
relation

To ~T ~L ' ~h (3.2)

where L is the characteristic linear scale of pseudoturbulent motion and w' is the particle pulsation veloc-
ity. With Ty —0 Eq. (3.1) becomes Fick equation. Some considerations which follow from (3.1} enable one
to adopt (see the footnote to [7])

Ty == tr D (w'2)-1, tr D = Dy (3.3)

It is not convenient to apply the estimates (3.2) and (3.3) since the quantities L and (w'2> which
appear in them are not known a priori. I is therefore better to employ sometimes the approximate rela-
tion

T& pard T@ (3'4}
where Ty is the time scale of the concentration fluctuations 8p (t, %) calculated below. The expressions
(3.2} and (3.4) are only approximate.

Equation (3.1} for the quantity 6o (t, x) determines a "regular® degeneration of the random field of
concentration fluctuations due to particle diffusion. Assuming that the initial distribution of particles and
the boundary conditions are given,the problem thus obtained can be considered as a problem with initial
data though from physical considerations it is clear that only those solutions need be considered which de-
crease with time. In reality, such regular damping of fluctuations is compensated by their random accu-
mulation; this, however, has been completely disregarded in Fq. (3.1). To take into account the accu-
mulation one should infroduce an additional source term on the right-hand side of (3.1). I is essential that
the characteristic time of the varying forces which cause the appearance of fluctuations, that is, the time
for a change in this term,is of the same order of magnitude as the internal time scale of pseudotrubulence
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7 which characterizes the internal interaction in the system leading to the establishing of local equilibrium
[7]. In view of the inequality 7 < T the random quantities whose time scale is equal fo 7 can be regarded
as quantities with independent increments if only the processes whose characteristic duration is of order T
or more are of primary interest.

The quantity 7 represents the characteristic minimum time of local interactions for any statistical
system in nonequilibrium statistical mechanics. The use of the inequality 7 < T is equivalent to consider-
ing this sytem in the familiar random-phases approximation. Some examples will be given to clarify the
matter. Thus in the kinetic theory of gases the part of the time 7 is played by the time of establishing the
state of molecular chaos, that is, the mean time between successive collisions of a molecule. The random-
phases approximation is equivalent in this case to the hypothesis of molecular chaos,and instead of the
Liouville equation for gas one is able to consider the familiar Boltzmann equation. In the latter case all
processes of duration ~ 7 are generally disregarded (that is, one ignores the so-called region of "molecu-
lar noise"™ due to local infringements of the molecular state of chaos); for this reason the equation which
describes "regular® approximation of gas to the macroscopic state of maximal entropy is not suitable for
describing the generation of fluctuations in gases. In the theory of Brownian motion the quantity 7 is iden-
tical with the time during which a suspended particle undergoes several molecular impacts. On the other
hand, the part of the time T is played in these systems by the fime of equalization of macroscopic param-
eters (temperature, density) of a gas in a physically small volume and aswell by the characteristic re-
tardation time of a Brownian particle due to the forces of viscous interaction with the fluid, respectively.

‘In view of what was said above, the stochastic equation for 8p (£, X) can be written as

at X

025 24! i 4} [}
T“W%+—i_< Dﬁ)bpzc(t, x) (3.5)

where c{t,x} is a random quantity whose spectral density is independent of the pulsation frequency w.

Similarly as in (2.1) the random variables will now be represented by stochastic Fourier-Stieltjes
integrals:

op = ({emcrioaz,, o= {(emxtiodz, (3.6)

Inserting (3.6) in (3.5) one obtains

[to 4 (kDk — Ty0*)] dZ, = dZ, (3.7)
Hence one obtains the expression for the complete spectral density of the random process &p (t, x):
R 7Y T AdZ2dZ>
Yoo (0, k) = m v Feolk) = dm‘lgll{l—m ~ida (3.8)
By employing the obvious relation ‘
[
D1 (k) = S Yoo (@, k) do
-
one obtains from (3.8) the representation
KDk @, & )
Yoo (00 B = = Grr ik —To® (3.9)

In the above &, , (k) is the partial spectral density evaluated in Section 2. The space~time correla-
tion function of the process 8p (t, X} is expressed in the standard form

"Rpp (T ) =(0p (t, X)Bp (f + T, x4-1)) = Sge“"“'i‘“"l"p,p (o, k)do dk (3.10)

Using (3.9) and (3.10), it is not difficult to calculate the quantity T, appearing in (3 4). By using the
formula (2.11) one obtains

o : -1
) 4 . Q'Y (ko — k)’ ’ —kd
Lo =7 00 _Sx, Beo (7, O = S T (S Y (o= 1) k) 611
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Employing the results of [7], it can be assumed that the pseudoturbulence of the phases of a disperse
system has an axial symmetry. By adopting suitable coordinate axes and denoting in these axes the eigen-
values of the tensor D by Dy and D, = D; respectively one obtains from (3.11) that

314 i 1 _._ D2 b
T m“‘—_’l"*‘arc‘}g(?>—koTDl—’ Yw(Dr—De) ¢.12)

1t should be emphasized that in contrast to the simultaneous statistical characteristics of concentra-
tion disturbances which in accordance with the results obtained in Sections 1 and 2 do not depend on the
development level of the pseudoturbulence of a disperse system, the quantities by which the behavior of these
disturbances is characterized in time are related (via the coefficients of the particle diffusion) to the inten-
sity of the pseudoturbulence.

4. Generalization of Polydisperse Systems. Monodisperse systems of particles which do not differ
from each other have only so far been considered by us. In fact, the particles may differ with respect to
some attribute (or attributes) so that in the dispersed phase one has to differentiate between different com-
ponents (fractions).

Pirst, it is assumed that the volume V is occupied by particles of J different fractions, the total num-
ber of particles of the j-th type being equal to nv(i) (subsequently, all quantities referring to such particles
carry a superseript j). The mean state of such a polydisperse system can be described with the aid of the
mean volume concentration p and of the partial concentrations of particles of different types p(i):
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In principle the analysis of fluctuations of the number of particles of different types in a volume
A<V can be carried out using the method employed in [5]. Thus relations of the same kind as those in the
introductory part are obtained. However, in subsequent considerations only the distributions of the num-
bers of particles in a sufficiently large volume A are of interest to us when (n‘ép% »> 1, ] 6nA(j)n/ (nA(J')>[ «
1 and when the equality
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can be assumed approximately, where a(d) is the specific volume content of the particles of the j-th frac~
tion in V. Employing the relations (4.2),one is able to represent formally the volume A as the sum of the
volumes A0 = ag) A such that the particles of the j~th type are found inside A with very large probability
[see also the distribution (0.3)]. In other words, the volume A is interpreted as a superposition of J lattices,
the volumes of whose cells are equal to o () /py, their total number being
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The entire volume V occupied by the disperse system can be described in a similar manner, If the
considerations in [5] are repeated word for word, the distribution is obtained of the particles of the j-th
fraction in the form
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In the above the quantity v, which takes the place of v in (0.3),is given by
V= ‘;% R 4.5)

and is the same for particles of different fractions.
Moreover, the distribution of all particles can be written as
W (nd, . .., ) =é W () (4.6)
=1
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From (4.4) and (4.6) the relations
ondy=0,  <@EndH» =v(d -V =1 - D> @.7)
are obtained,which replace (0.4).
The functions é(j) x), p(j) (x) as well as their variances are determined by analogy with (1.1)-(1.3):

@ _ 1 ’ ’ s®
20 = {ewraw —x, o=

)
cgﬁ e
) 1 ) ’ \ ’ 5
P (x) = o S £ (x' — x)dx) = p (to, ) 4.8)
4 c(p‘—’)
SED2 (x)y = ¢8p@2 (x)) = pWp (1 — L) — ap2 (1 — P
(B (1)) = (8% (x)> = pp (1 — ) — a2 (1 — L)

The variance p (t;, %), which is the sum of partial concentrations (4.8),is equal to the sum of the vari-
ances p(i) (%) and can be expressed, as before, by the formula (1.7). By making use of exactly the same
considerations as in Section 2 one arrives at expressions for thepartial spectral densities which are of the
same form as the relations (2.3) and (2.11). By comparing the variance p(j) (x) calculated from the expres-
~ sions for ég? 0 (k) and the quantity (6p(3)2 (®)) of (4.8) one can determine the constants ®(J) and &'0) which
appear in them. In this manner one obtains two formulas for ég),

(2.3) and (2.11):

0 (k) which correspond to the formulas
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The quantities ao(j)_, ko(j) appearing in (4.9) as well as the volume oo(j) are determined, as before,

from the consistency of the expression for the variance of the number of particles of the j-th type obtained
from (4.9) and the relations (4.8). Then one has
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It is noted that ao(j) # A0) in contrast with describing a disperse system with particles of the same
type.

The dynamics will now be considered of fluctuations of partial concentrations of particles. I is ob-
vious that in the general case it is not possible for a coordinate system to be selected such that the mean
values of all the components of the disperse phase vanish simultaneously. The velocities (w(j)) must
therefore be introduced,and the diffusion equations (3.1) replaced by the corresponding equations of convec-
tive diffusion for particles of various fractions. Then applying similar considerations,the following rela-
tions for the complete spectral densities are obtained:
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In conformity with the relation (3.4) for a monodisperse system one can assume that the times To(j)
of (4.9) and (4.11) are approximately equal to the time scales Tp(J) of the fluctuations 6p() (¢, x). The latter
can easily be computed using a coordinate system in which the velocity of the mean motion of the particles
of the specified j~th fraction is equal to zero. One then comes to the conclusion that T (3 is given by means
of the relation (3.12) with all quantities which describe the physical properties and the particle diffusion
carrying the superscript j.

Now, let the particles of the disperse phase be continuously distributed in a parameter (or parameters)
denoted below by A. In practice, one has to deal mostly with the distribution of particles by their size and
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by their density. The corresponding distribution function ¥ (A) is infroduced which is normalized on the
total volume concentration p , that is,

Sw@)d?» = {4.11)

If one considers the particles whose parameter A is in the interval (A , X + A)) as belonging to some

discrete fraction,one can see that all the formulas previously obtained retain their form if the index j is re-
placed by a functional dependence of various quantities on A [for example, o) > o (2)] and p() is re-
placed by ¥ (A} Ax. Moreover, if one proceeds to the limit AA— 0 and instead of discrete sequences of
spectral densities one introduces their densities in the space A, the following relations for these densities
are obtainedsy
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Neither is it difficult by using the relations (4.10) or (4.12) to consider various correlation funetions

which are two-time and two-point. To this end it suffices to employ standard relations of the correlation
theory of stationary random processes.
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