
S P E C T R A L  T H E O R Y  O F  C O N C E N T R A T I O N  O F  D I S P E R S E  S Y S T E M S  

Yu .  A.  B u e v i e h  

A continuous function of coordinates and t ime is introduced to descr ibe  the random field of 
volume concentration of a monodisperse  system. The conditions are  clarif ied under which 
the function ensures  a most detailed description, consistent with a physical-intuition desc r ip -  
t ion,of the local  values of concentration. The var iance  of this  function is computed, and an 
express ion is obtained for  the spect ra l  density of the random deviation of the t rue concen-  
t rat ion f rom its mean value. Some quantities also obtained in a s imi lar  manner descr ibe  
the concentrat ion of individual components of the dispers ion phase in a polydisperse  system. 

The initial stage in the stat is t ical  analysis  of fluctuating concentrat ions of components of a polydis-  
pe r se  sys tem consis ts  in obtaining sufficiently representa t ive  express ions  for the distribution of the num-  
be r s  of suspended par t ic les  of var ious  types  in a specified volume of the d isperse  system, A solution to 
this problem for raref ied sys tems  in which individual par t ic les  can be considered as indistinguishable, 
noninteraeting, and stat is t ical ly independent par t ic les  was already given in the c lass ica l  works of Einstein 
[1] and Smoluchowski [2] (see also the exposition of colloidal s ta t is t ics  in [3]). A sound basis  has subse-  
quently been provided for the methods used in the above-cited ar t ic les  by introducing additive measure  on 
the set of e lementary  events for  an individual par t ic le  and by a subsequent functional integration over  the 
product  of measu re s  for  different par t ic les  [4]. 

A general izat ion of Smoluchowski 's  combinator ia l  method to include concentrated monodisperse  s y s -  
t ems  whose par t ic les  are,  as previously,  indistinguishable but need not be s tat is t ical ly independent was p r o -  
posed in [5]. In par t icu lar ,  an expression was obtained in [5] for the probabil i ty W(nA) of finding n A p a r -  
t ic les  each of volume ~ in some volume A selected in a sufficiently large  volume V occupied by the d i s -  
pe r se  system: 

N A-n A 
W (n•) = ~lv a''nx V~A (t - -  v) , V = n v / N v  = const (0.1) 

where  n v = const is the total number of par t i c les  in the volume V. 

If the par t ic les  of a d isperse  sys tem t rave l  independently, that is, if one considers  the fact of finding 
a par t ic le  in the volume A as an event independent of the behavior of other  par t ic les  and which is only d e t e r -  
mined by the total  number  of par t ic les  a l ready found in A, then one has 

N v = V - - ~ - ,  N A ~ - A - - ~ - - ,  n v < N v ,  n A < N A  (0.2) 

where p,  is the volume concentration of the sys tem in the densely packed state. 

The l a rge r  is n A and the bigger the volume A compared with the mean specific volume of a par t ic le  
ap = r where p = vp, is the mean volume concentrat ion of par t ic les  in V, the more  accura te  becomes 
the distr ibution (0.1). F r o m  (0.1) one can easi ly obtain for n A >> 1, N A >> 1, v =const  the Gaussian d i s t r i -  
bution 

- -  (n  ( - -  v N  A)~ 
i exp (0.3) W (nA) .~  [2~NA'r ( i  - -  ~ ) ] %  2NA.v ( t  - -  v) 
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The f i r s t  two moments  of the dis t r ibut ions (0.1) and (0.2) a re  the same .  We have 

<SnA> = <nA --vNn> = O, ((SnA)2> ---- <(hA--  VNA)2> = v (1 - -  v) NA (0.4) 

It is  not difficult to see that the nonfulfi lment of the assumpt ion  of the independence of the behavior  
of s epa ra t e  p a r t i c l e s  has no effect  on the fo rm of the dis t r ibut ions  (0.1) and (0.3). Indeed, let the pa r t i c les  
t r a v e l  in groups  each consis t ing on the ave rage  of ng pa r t i c l e s  and such that  the behav ior  of pa r t i c l e s  wi th-  
in a group is  comple te ly  co r r e l a t ed  though different  groups  a r e  s ta t i s t i ca l ly  independent. The method used 
in [5] is  a l so  appl icable  in th i s  case  provided not s epa ra t e  p a r t i c l e s  but s epa ra t e  groups a r e  considered.  In 
th is  case  one should understand,  in p a r t i c u l a r ,  by n V and n A the number  of such groups  in the volumes  V 
and A, r e spec t ive ly ,  and 

/Vv = V p* Na = A p* (0.5) 
,gO ' %~ 

Hence in the p a r t i c u l a r  case  of ng=  l o n e  obtains the re la t ions  (0.2). 

A se r ious  shor tcoming  of the theo ry  l ies  in that  the vo lumes  must  be measu red  d i sc re te ly  and be 
mul t ip les  of the  "min imal"  volume n g ~ / ( p , A ) .  T h e r e f o r e  any volume A can only be descr ibed  with a r e l a -  
t ive  e r r o r  of the o r d e r  of n g g / ( p , A ) , w h i c h  l imi t s  the  appl icabi l i ty  of the theory  when dealing with numb er s  
of pa r t i c l e s  in sma l l  vo lumes .  With an unbounded i nc r ea se  of A this  e r r o r  c ea se s  to be of any impor tance ;  
then the re la t ions  given above become accura te .  

in the gene ra l  case  it  is  n e c e s s a r y  when analyzing a d i s p e r s e  s y s t e m  within the f r a m e w o r k  of the 
mechan ics  of continuous media  to pa s s  on f r o m  the d i s c r e t e  method of descr ib ing  concentra t ion and other  
quant i t ies  which c h a r a c t e r i z e  the s ta te  of a d i spe r s e  s y s t e m  to descr ib ing  them by using some continuous 
r andom functions of coordinates  and of t ime  (a phenomenological  d i scuss ion  of a number  of p r o b l e m s  which 
have a bea r ing  on ou r  p rob l em  can be found in [6]). Some concepts  per t inent  to  such t rans i t ion  were  p r e -  
v iously  given when s ta t i s t i ca l  hydrodynamics  of d i spe r se  s y s t e m s  was formula ted  and random motions in-  
ves t iga ted  of the p a r t i c l e s  and of t he i r  fluid phase ,whose  appearance  was  in point of fact conditioned by the 
concentrat ion f luctuations (see,  for example ,  [7]). By employing a more  r igorous  analys is  based  on a num-  
b e r  of methods developed in s ta t i s t i ca l  phys ics  of fluids and dense gases  the re la t ions  p rev ious ly  used in 
[7] can be made somewhat  m o r e  exact .  

It should be  emphas i zed  that  all  our  subsequent  cons idera t ions  apply to s y s t e m s  in the "equi l ibr ium" 
s ta te  i~ which all  the  m a c r o s c o p i c  c h a r a c t e r i s t i c s  which desc r ibe  the s ta te  r e m a i n  constant  within the 
vo lume V. The ana lys i s  i s  c a r r i e d  out by using a s y s t e m  of coordinates  in which the d i spe r sed  phase  is  
p e r m e a t e d  by the fluid flow and is  on the ave r age  in the s ta te  of res t .  

1. Ins tantaneous Volume Concentrat ion of Pa r t i c l e s .  One defines f i r s t  the function 

i ~n A ( 1 . 1 )  
~A(X)=P-}-~A(X) = - - ~  I 8 ( x ' ) d ( x ' ~ x ) - -  A 

A 

in which the in tegra t ion  is over  the volume A, x is  the radius  vec to r  of the s y m m e t r y  cen te r  of the volume,  
and the function e (x) is  equal to unity in the in t e r io r  of the pa r t i c l e s  and ze ro  outside them.  It can eas i ly  
be  seen that  the function }A (x) is  continuous and dif ferent iable .  

By using the  express ion  (0.4) and the definition (0.5) of the number  N A a r ep resen ta t ion  for  the 
v a r i a n c e  of ~ A(X) is  obtained f r o m  (1.1) wlfich, in view of what was said above, is  val id for  (hA} >> 1: 

p~ 

whence it is seen  that  s ta t i s t i ca l  c h a r a c t e r i s t i c s  of ~A (x) depend to a cons iderable  extent on the size of 

the volume A appear ing  in (1.1). In fact ,  when der iving (1.2) it was  a s sumed  that  n g = l .  

In pa r t i cu la r ,  fo r  (n } -~ ~ the  function ~ A(X) approaches  t heeons t an tp ;  for  (nA) -~ 0 i ts  va r i ance  
i n c r e a s e s  without bounds; this  does not make sense  f rom the phys ica l  point of view. T h e r e f o r e  the question 
now a r i s e s  as to what vo lume A should be  se lec ted  In (t.1) for  a phys ica l ly  adequate definition of ~ A(X). 
To answer  th is  question let  us consider  a rea l iza t ion  of a "homogeneous"  dis t r ibut ion of p a r t i c l e s  in space  
to which a Kmetion ~ (x) co r r e sponds  ident ical ly  equal to i t s  mean value p .  In such s tate  the  pa r t i c l e s  a re  
d is t r ibuted  in a r egu l a r  manner  and a re  found, for  example ,  at the nodes of a r egu la r  latt ice.  To a s sume  
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that  such s t a t e s  do exis t  s e e m s  absolutely indispensable  at l eas t  within the f r a m e w o r k  of the stati.,~tical 
t heo ry  of the type  under  considerat ion;  fo r  compar i son  with an analogous case  in the s ta t i s t i ca l  phys ics  of 
f luids see  [8]. 

One a s s u m e s ,  for  s impl ic i ty ,  that  all  pa r t i c l e s  a re  of the s ame  shape. Then it is na tura l  to think 
that the volume A appear ing  in  (1.1) is  s i m i l a r  in shape to the volume of a single pa r t i c l e  in a s y s t e m  with 
a specif ied type of r egu la r  packing. It is  r equ i red  that  the quantity ~ A (x0), where  x 0 is  the center  of g rav-  
ity of any par t i c le ,  be exact ly  equal to p .  If A -< ~, then it is  obvious that  the volume A is  mainly  posi t ioned 
within a pa r t i c l e  so that ~ A (x0) > p and pe rhaps  ~A (x0) > P*" The la t te r ,  however,  does not make sense  
f r o m  the phys ica l  point of view since ~ A (x0) should not exceed the value p ,  which co r r e sponds  to the 
densely  packed s tate .  If A > a ,  A < ap, then again ~A (x0) > P �9 Final ly,  let  A > a p .  Since the pa r t i c l e s  a re  
r egu la r ly  posit ioned, it is  c l ea r  that  i f  the volume A exceeds  only sl ightly ~p, then within th is  vo lume a 
unique par t i c le  can be found with cen te r  at the point x 0 such that  ~A(X0) < p .  It can thus be  in fe r r ed  that  
the  volume A should be equal to the ave rage  volume of a pa r t i c l e  in the s y s t e m  ~p .  

One can also se lec t  A >> ~p ; then the quantity ~A(X0) is  identical  with p .  However ,  th is  is a much 
m o r e  crude  descr ip t ion  of the  local  concentra t ion va lues  of a monodisperse  sy s t em than the most  detai led 
poss ib le  descr ip t ion  which co r re sponds  to the equali ty A = ap �9 For  A < ~p the function ~A (x) defined in 
accordance  with (1.1) has no s t r a igh t fo rward  phys ica l  sense.  

The shape of the volume A is  de te rmined  by the f o r m  of a pa r t i c l e  ave rage  volume [8] and depends 
f i r s t  of all on the f o r m  of the p a r t i c l e s  and also on the type of t he i r  r egu la r  packing. It can be de te rmined  
f r o m  the equali ty of ~(x) t o  the quantity p when the point x is  d isplaced f rom the cen te r  of the pa r t i c l e  
x 0. In actual  d i s p e r s e  s y s t e m s  the packing of pa r t i c l e s  is usual ly  chaotic; m o r e o v e r ,  different  p a r t i c l e s  
can be of di f ferent  shape and can be different ly  or iented in space.  The re fo re ,  for  s impl ic i ty  one can 
cons ider  the volume A as being a spher ica l  volume.  

Even for  A = ap the concentra t ion of the d i spe r se  s y s t e m  is desc r ibed  only local ly  by the function (1.1). 
Indeed, it is not difficult  to see that  the quanti t ies ~A(X]), whe rex j  (j =1 .... .  n V) a r e  the rad ius  vec to r s  of 
the pa r t i c l e  c en t e r s  and a re  equa l to  or  exceed p not only for  a homogeneous but also for  any distr ibution of 
p a r t i c l e s  in space  even if  the s y s t e m  is  local ly  r a t i f i ed  in the  neighborhood of some par t i c l e s .  To e l iminate  
th is  d isadvantage the continuous function p(x) =p (to, x) descr ib ing  the local  vo lume concentra t ion of a d i s -  
p e r s e  s y s t e m  at a t i m e  instant  will be  defined with the aid of the re la t ion 

t 
p (x) = p + 6~, (x) = --X- I ~a (x' - -  x) dx' 

A 

A = ~ ,  ( (6p (x)) ~} -~- (~A 2 (x)} 

(1.3) 

The  use  of the function (1.3) co r re sponds  to a pe r f ec t ly  na tura l  notion that  f r o m  the mac roscop i c  
point of view any quantity descr ib ing  a local  s ta te  of a d i spe r se  s y s t e m  can only be defined with an accuracy  
up to the mean volume of an individual pa r t i c le .  The re la t ion  (1.3) r e p r e s e n t s  one of the poss ib le  f o rma l  
definit ions in s ta t i s t ica l  phys ics  [8, 9] of the  instantaneous specif ic  volume of a pa r t i c l e  with subscr ip t  j 

~j = o / p (xj), ] = t ..... n v  (1.4) 

Thus,  the mean specif ic  vo lume of a pa r t i c l e  p lays  the pa r t  of the leas t  "physica l ly  smal l "  volume of a 
d i s p e r s e  s y s t e m  which can be cons idered  within the f r a m e w o r k  of the continual theory.  

The  va r i ance  will now be calcula ted of the function p (x). To this  end, a l a rge  volume A << V, (hA) >> 1 
is  cons idered  consis t ing of n A specif ic  vo lumes  (1.4) where  the space dis tr ibut ion of pa r t i c l e s  at the in-  
stant  t o is  comple te ly  de termined,  as s ta ted above, by e i ther  the quanti t ies  Cj or  the quanti t ies p (xj).  Of 
course ,  for  s ta t i s t i ca l ly  independent p a r t i c l e s  these  quanti t ies  can be r ega rded  as independent. Fo r  (hA} >> 
1 one has  the equali ty 

~ S n  A ~_ Spa = ~ ~ <-~7~> ~6pj,  5p~ = p (xj) - -  p, 1 ~ ] ~ < n a }  (1.5) 

The quanti t ies  8pj sa t i s fy  all the assumpt ions  whose fulfil lment makes  the cen t ra l  l imit  t h e o r e m  of 
the probabi l i ty  theory  valid for  t he i r  sum. Consequently,  it can be a s s e r t e d  that  for  (hA) >> 1 the quantity 
SpA has a Gaussian dis tr ibut ion whose va r i ance  is equal to the sum of equal v a r i a n c e s o f  the random c o m -  
ponents  6pj/n A in (1.5). By using the re la t ion (0.3) the dis tr ibut ion can be wri t ten as 
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I (hA) 1 ~A -- In A) (6pA)2 
W (6pA) ~ 2 z l p ~ ( l _  p / p ,  ) exp 2p~( l__? /p .  ) . (1.6) 

t t e re ,  as in (0.3), the exact  equality has been rep laced  by an approx imate  one because  the obvious 
cons t ra in t s  - p - <  SPA<- p ,  - p  or  0 _< n A -< N A have been ignored. This  is quite admiss ib le  in view of the 
s m a l l n e s s  of the re la t ive  f luctuations for  (hA)>> 1. F r o m  (0.4), (1.5), and (1.6) the fo rmula  

((6p) 2) ~ ((6p(J)) ~) = p~ (1 -- p / p,) (1.7) 

is  now obtained and will  be  used l a t e r  when one p roceeds  to  a spec t r a l  descr ip t ion  of concentra t ion f luc tua-  
t ions of a d i s p e r s e  sys tem.  Formal ly ,  one could have obtained (1.7) f rom (1.2) and (1.5) using that  (nA) = 1. 
However ,  the l a t t e r  cont radic ts  the assumpt ion  (hA) >> 1 fo r  the val idi ty  of the re la t ion  (1.2). 

2 .  Pa r t i a l  Spect ra l  Densi ty  of Concentrat ion Fluctuations.  The  quantity 80 (x) of (1.3) will  now be 
cons idered  as a r andom function of a space  point; it is  r e p r e s e n t e d  in the fo rm 

6p (x) • i eikxdzp (2.1) 

where  the in tegra t ion  is  ove r  the ent i re  wave  space  and dzp is  the  spec t r a l  m e a s u r e  of the field 8p(x). To 
calcula te  the  spe c t r a l  density 

Op.~ (k) -~ lira (dzp*dzp) (dk) -1 (dk-. 0) 

the methods developed in s ta t i s t ica l  phys ics  [9, 10] will  be employed.  Following [10] the "detai led" concen-  
t r a t ion  of a d i s p e r s e  s y s t e m  and i ts  F o u r i e r  t r a n s f o r m a t i o n  a r e  r e p r e s e n t e d  in the f o r m  

V ~  ( i~/~nv)  (2.2) 

In view of the  equivalence of pa r t i c l e s  and s t a t i s t i c a l  homogenei ty  of the  space,  the va lues  of p (x) 
at d i f ferent  points  can be cons idered  as  s ta t i s t i ca l ly  independent, that  is ,  the random field 8 ~ (x) = u (x) - 
(~)  , (u)  = (u (x ) )  is  white noise.  Clear ly  i n t h i s  case  ~ u , p  (k) =~=  const ,which follows, for  example ,  
f rom the second re la t ion  (2.2). F r o m  our  p rev ious  considera t ions ,  however ,  it becomes  c l ea r  that  the de- 
sc r ip t ion  of a s y s t e m  with the aid of the function v (x) within the f r a m e w o r k  of a continual t heo ry  does not 
make  muct~ sense,  one of the  r e a s ons  being that  i t s  va r i ance  does not a s s u m e  any finite value.  Th is  diffi-  
culty can usual ly  be avoided by using a method p roposed  by Massignon [9, 10]. Namely,  the  ~-funct ions  in 
the  sum (2.2) a r e  r ep laced  by other  d is t r ibut ions  in the sense  of Schwartz; they can be e i the r  functions or  
m e a s u r e s  with the  p r o p e r t y  

f O(x -- xj) dx----- t 
V 

F r o m  the phys ica l  point of view this  indicates  that  the posi t ion of the center  of any pa r t i c l e  can be 
de t e rmined  with an accu racy  up to a vo lume a0 within which | (r)  i s  d i f ferent  f r o m  zero.  tn s ta t i s t ica l  
phys ics  one employs ,  as a rule ,  for  |  some  smooth function which d e c r e a s e s  sufficiently rapidly  as  
r --~ co (Massignon h imse l f  used the Gaussian function [9]). The ra te  of this  d e c r e a s e  as well  as the an- 
gu la r  dependence |  deviat ion f r o m  some  is |  function) is  de te rmined  by the type of i n t e rmolec -  
u la r  in terac t ion  in the fluid or  solid s y s t e m  of many  pa r t i c l e s  andby a shor t -  or  long-range o r d e r  which 
is  p r e sen t  in it. 

In view of chaotic  packing of r ea l  p a r t i c l e s  in a d i spe r s e  s y s t e m  the hmct ion | (r) can be  cons idered  as  
an is |  function o f r  = [ r[ . To be speci f ic  | (r) will  be e x p r e s s e d  in t e r m s  of a Heavis ide  unit step 
hmction,  that  is ,  we set  

t, x~O - 
O ( r ) - - ~ i  y(a  0 _ r ) ,  Y(x) : 0, ~ < 0  ~o-4~ao8 (2.3) 

The  function 

(l ~ / ~ n v) (2.4) 
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which is  obtained f r o m  v (x) in (2.2) by rep lac ing  the 5- funct ions  by the functions | of (2.3), is subsequent ly  
identified with p (x) of (1.3). Using the re la t ions  (2.1), (2.2) and employing a s tandard  approach  [10,] for  
de termining  4~p,p (k) by ~v, v(10, one obtains the re la t ions  

< (59)3 } = l ff)P,~ (k) dk 
r ~ 0 ik~,; = (2.5) Op,~(k)=~-o ~ - j e  ~(ao--r)dr 3(i) V sintzao--kaocoskao 

(l:ao)~ 
(O ~ cons t )  

Compar ing  the va r i ance  p (x) computed f r o m  (2.7) and the quantity (1.8),une obtains the express ion  

v:0  ( p) �9 = ~ - ~ - 8  p 2 t - - ~ - .  (2.6) 

The volume r 0 c h a r a c t e r i z e s  the  degree  of " c o a r s e n e s s "  [10] of the pa r t i c l e  s y s t e m  under  cons ide ra -  
tion, that  is ,  it d e s c r i b e s  the s ize  of the minimal  "ce l l"  in space and must  be the e r r o r  with which va r ious  
local  p r o p e r t i e s  of the s y s t e m  can be de termined;  the l a t t e r  p o s s e s s  a phys ica l  meaning f r o m  the m a c r o -  
scopic  point of view. Hence it follows d i rec t ly  that the volume (r 0 must  be equal to the volume A = (rp which 
appea r s  in the definit ions (1.1) and (1.3). Th is  a s se r t i on  r e p r e s e n t s  one of the poss ib le  hypotheses  with 
r e g a r d  to the quantity r 0. 

It would have a lso  been poss ib le  to rep lace  the expres s ion  (2.2) for  v (x) by a more  exact  fo rmula  in 
which the 6 (r) we re  cor respondingly  rep laced  by the functions a - l e ( r )  introduced in (1.1) and then to 
a t tempt  to identify p(x) with the sum thus obtained. The la t t e r  is equivalent to admitt ing that a0 =cy, so 
that  a 0 in (2.3) and (2.4) is  ident ical  with the radius  a of a sphere  whose volume is  equal to ~. 

Finally,  it is  admiss ib le  to cons ider  a p r i o r i  a0 as  a m e a s u r e  of vo lume within which one may find the 
cen te r  of a pa r t i c le  for  a given packing of pa r t i c l e s  in space,  that  is, to identify a0 with the mean f ree  
volume a f  in  the sys t em.  The f ree  volume can a lso  be r ep re sen t ed  approx imate ly  by r ~ ap - c .  where  
~ .  = a / p .  is  the minimal  value of aO at tained in the s ta te  of dense packing [8]. Some re la t ions  implied 
by  t he se  hypotheses  have a l ready  been cons idered  by the author  in a number  of a r t i c les .  

To find an adequate definition of the quantity (r 0 the f luctuations of the number  of p a r t i c l e s  a r e  again 
cons idered  in a l a rge  volume A. F o r  s impl ic i ty  it is a s sumed  that  the volume is a pa ra l l ep iped  with 
s ides  l j (j =1, 2, 3). Using (2.1),the deviation of the number  of pa r t i c l e s  n A in the volume f r o m  the mean 
value <hA} can bewri t ten  as 

3 

t i I [I e'%'~:'~--t dzr (2.7) 8nz = ~- ~=x 

Employing the f ami l i a r  p r o p e r t i e s  of the r ep r e sen t a t i on  (2.1), the re la t ion  

3 

] o.p (k) dk 

= 3 - ~  -ff~~ p*(l -~-,]P\f ~ [ i (  t _  - cos km~ ~ "sin ka0-- ka0 cos a a 0 k ~  1 k~ dk 

(2.8) 

is obtained f rom (2.5)-(2.7). 

By select ing 1 m such that  1 m >> a 0 one obtains f r o m  (2.8) 

(2.9) 

Finally,  compar ing  the above re la t ion  with (0.4), one obtains 

a o = ap -1= up, a0 = aP -1/~ (2.10) 

Instead of smoothing the "deta i led"  concentrat ion (2.3) by "spread ing  about" each pa r t i c l e  ove r  the 
mean speci f ic  v o l u m ~ t h e  s pec t rum  of concentra t ion d i s tu rbances  could be cut off f rom its shor t -wave  r e -  
gion [9, 10]. L~ fact,  this  p rocedu re  is  equivalent to the Massignon method, the di f ference being that  it is  not 
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in the r e a l  but in the wave space.  On the o ther  hand, it is  equivalent to applying the f ami l i a r  method of 
Debye fo r  de te rmin ing  the n u m b e r  of ha rmon ics  of the F o u r i e r  r ep resen ta t ion  of the random quantity 5p(x) 
f r o m  the number  of deg rees  of f r eedom of the mul t ipar t ic le  s y s t e m  under  considerat ion.  In th is  case the 
in tegra t ion  over  the wave space  is,  in fact, r ep laced  by the addition over  the Bri l louin zone for  the sys tem.  

By introducing the c r i t i ca l  wave  n u m b e r  k 0 at which the cut off of the spec t rum is  effected we can 
wr i t e  

(I)~,. (k) = ~ '  Y (k o --  k) (2.11) 

The  constants  k 0 and ~ '  a r e  de te rmined  f r o m  the p rev ious  conditions, that  i s ,  by  demanding that  the 
va lues  of  the v a r i a n c e s  of the quant i t ies  p (x) and n A be equal to those  calculated above. In this  manner  one 
obtains 

r - - - 3  t4 - = ( 9,, I = ( U '  t (2. 12) - 4,, x- , . / '  c r - j  z 

The  functions (2.3) and (2.11) r e p r e s e n t  F o u r i e r  t r a n s f o r m a t i o n s  of each other ;  in our t heo ry  both 
these  functions a r e  equally worthy ofbeing considered;  th is  i s  due to the a r b i t r a r i n e s s  in the choice of the 
smoothing function | In fact ,  the fo rm of O(r) should be  de te rmined  by using the p r o p e r t i e s  of the  
packing of the p a r t i c l e s  as it  is  done, for  example ,  for  c ry s t a l  la t t ices .  However,  in d i spe r se  sy s t ems  the 
actual  packing of p a r t i c l e s  does not belong to any specif ied type ,and  to be able to apply th is  method s t a t i s t i -  
ca l  weights  of packings  of  va r i ous  r egu la r  types  must  be  fotmd. It is  not known at p r e sen t  how to solve th is  
p rob l em;  t h e r e f o r e  p r e f e r e n c e  for  e i ther  the function (2.3) o r  (2.11) would signify an excess  in the  p r ec i -  
sion of the theory .  However ,  in speci f ic  calculat ions p r e f e r e n c e  can be given to the cons iderably  s imp le r  
function (2.11). 

It  is now a s s um ed  that  the behav io r  of the ne ighbor ing  p a r t i c l e s  is  co r r e l a t ed  and that  ng > 1. The 
a rguments  used when der iv ing the re la t ions  in Sections 1 and 2 r e m a i n  val id  also in this case  provided that  
s e p a r a t e  p a r t i c l e s  a r e  rep laced  in our cons idera t ions  by s epa ra t e  groups  (packets) of pa r t i c l e s ,  each  con-  
s is t ing  of ng pa r t i c l e s .  In pa r t i cu l a r ,  the bas i c  f o r m  of the fo rmu la s  (1.8), (2.3), (2.11), and o thers  r e -  
mains  the  s a m e  even fo r  n g ~  1; however ,  the exp re s s ions  for  A, u 0, a 0 , andk 0 obtained p rev ious ly  should 
be rep laced  by 

%~ [ ng.~,l, [ 9~p ,~'I, i (2.13) 
A - - % = - - ~ - ,  a o = a \ - ~ ]  , k0=k-~ng] a 

The  r ea son  for  the i n c r e a s e  in the vo lumes  A and u 0 and in the quantity a 0 is quite obvious since 
s ta t i s t i ca l  l inks now appea r  between the pa r t i c l e s ;  in pa r t i cu l a r ,  a 0 can be cons idered  s imply  as a c h a r a c -  
t e r i s t i c  l inear  s ize  of a packet  o r  a pa r t i c l e  " co r r e l a t i on  rad ius . "  The cor responding  d e c r e a s e  in k 0 de- 
s c r i b e s t h e  reduct ion in the s y s t e m  Bril louin zone, that  is, a reduct ion in the number  of  ha rmonics  in the 
F o u r i e r  r ep re sen ta t i on  of the r andom field 5p {x). The l a t t e r  i s  re la ted  to the reduction of the to ta l  num-  
b e r  of t r ans l a t iona l  deg ree s  of f r eedom of pa r t i c l e s  when they a r e  combined into packe ts .  

Bas ica l ly ,  the  quantity ng depends on the phys ica l  p r o p e r t i e s  of the phase s  of  the d i spe r s e  s y s t e m  and 
on the type  of t he i r  mean motion; the l a t t e r  i s  not known a p r i o r i  but can be e s t ima ted  within the f r a m e w o r k  
of s ta t i s t i ca l  hydromechan ics  of d i s pe r s e  s y s t e m s  (see,  fo r  example ,  footnotes in [7]). 

3. The  Dynamics  of Concentrat ion Fluctuat ions  of a Monodisperse  System.  We have cons idered  so 
f a r  only the c h a r a c t e r i s t i c s  of a random field 6p(x) at some fixed instant  t 0. Now the change of the field 
in t i m e  will  be  invest igated;  this  is  absolute ly  indispensable  in studying the in ternal  s t ruc tu re  of chaotic 
local  motions (pseudoturbulence) of d i s p e r s e  sys t ems .  

The  c h a r a c t e r i s t i c  t i m e  of a change in the random field Tp is  of  the s ame  o rde r  of magnitude as the 
ex te rna l  t i m e  sca le  T of the pseudoturbulent  motion by which this  change is caused [7]. The re fo re ,  to de-  
s c r ibe  the dynamics  of concentra t ion fluctuations one does not find it convenient to apply the s tandard diffu- 
sion equation in the Fick  form, which is  only va l id  in the  l imi t  T p / T  --~ r ; the p r o b l e m  now a r i s e s  of finding 
a genera l ized  diffusion equation which would p e r m i t  the invest igat ion of diffusion p r o c e s s e s  with a c h a r a c -  
t e r i s t i c  durat ion t ~ T. 
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There are various methods for obtaining such an equation, and one can subdivide them into two kinds. 
The methods of the first kind reduce to having the diffusion coefficients dependent on t so that for t ~ 
they approach the familiar stationary diffusion coefficients, These methods are based on variances of dis- 
placement of an individual particle and are characteristic for the theory of turbulent diffusion, the theory 
of Brownian motion for small t, etc. In our case it is not expedient to apply this approach since it is diffi- 
cult then to use the correlation theory of stationary random fields for describing p(t, x}. 

The methods of the second kind reduce to adding terms containing higher time-derivatives to the Fick 
equation. However, there is no method available which would enable one to estimate accurately (even inthe 
simplest cases) the constant coefficients which appear in these terms. It is obvious that the most rigorous 
method for deducing a general diffusion equation would involve the introducing of distribution functions 
for the coordinates, the velocities,and the accelerations of all orders for the suspended particles; it would 
also involve proceeding from the continuity differential equations for these functions in the corresponding 
phase space to finite-difference equations [ii]. The main disadvantage of such an approach lies in that one 
has to compute all moments of the distribution functions for the velocities of the particles. 

There exists another feasible approach which consists in considering the continuity equations for the 
last functions only; in the latter the details of disturbances suffered by the moving particles are taken into 
account phenomenologically by introducing concentrations of "scattering centers ~ and effective scattering 
cross section or by mean lengths of free paths of the particles between two consecutive scatter reports. 
A diffusion equation obtained in this manner was already employed in [7]. Finally, one can also consider 
a simple simulation of a random walk of a particle in space [3] assuming that the displacement velocity of 
the particle is finite (this problem was analyzed in detail in [12] for a single-dimensional walk). An ele- 
ment of arbitrariness is also contained in these methods when determining the definite values of the veloc- 
ity of the walk, of the characteristic duration of motion without a change in its direction, etc. All the de- 
scribed methods lead to the diffusion equation (3.1). 

The diffusion equation of particles is written as 

O~-p . Op f 8 D 0 To ~- ~- ~- ~ ~ ~) p (3. i) 

In the above D is the tensor of the diffusion coefficients of particles,which can be calculated within 
the framework of the statistical hydromechanics of disperse systems [7], and the quantity T o satisfies the 
relation 

Te ~ T ~-- L (w '~) -'/, (3.2) 

where  L is the charac te r i s t i c  l inear  scale of pseudoturbulent motion and w' is the par t ic le  putsa t ionveloe-  
ity. With T O -* 0 Eq. (3.1) becomes  Fick equation. Some considerat ions which follow from (3.1) enable one 
to adopt (see the footnote to [7]) 

T o ~ tr D (w'2) -1, tr D = Dis (3.3) 

It is not convenient to apply the es t imates  (3.2) and (3.3) since the quantities L and (w ~2) which 
appear  in them are not known a pr ior i .  It is  therefore  bet ter  to employ somet imes  the approximate r e l a -  
tion 

T o ~ T~ (3.4) 

where Tp is the t ime scale of the concentrat ion fluctuations 6p (t, x) calculated below. The express ions  
(3.2) and (3.4) are  onty approximate.  

Equation (3.1) for the quantity 6p (t, x) de termines  a " regular  ~ degeneration of the random field of 
concentration fluctuations due to par t ic le  diffusion. Assuming that the initial distribution of par t ic les  and 
the boundary conditions are  given,the problem thus obtained can be considered as a problem with initial 
data though f rom physical  considerat ions it is c lear  that only those solutions need be considered which de- 
c rease  with t ime.  In reali ty,  such regular  damping of fluctuations is compensated by their  random accu- 
mulation; this, however,  has been completely d is regarded  in Eq. (3.1). To take into account the accu- 
mulation one should introduce an additional source  t e r m  on the r ight-hand side of (3.1). It is essent ial  that 
the charac te r i s t i c  t ime of the varying forces  which cause the appearance of fluctuations, that is, the t ime 
for  a change in this  term,  is of the same order  of magnitude as the internal  t ime scale of pseudotrubulence 
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~- which c ha r a c t e r i z e s  the in ternal  in teract ion in the sys tem leading to the establishing of local  equi l ibr ium 
[7]. In view of the inequality T <<T the random quantit ies whose t ime scale  is equal to T can be regarded  
as quantit ies with independent inc rements  if only the p r o c e s s e s  whose charac te r i s t i c  duration is of o rde r  T 
or  more  a re  of p r i m a r y  in teres t .  

The  quantity T r ep resen t s  the cha rac t e r i s t i c  minimum t ime  of local  in teract ions  for  any s ta t is t ical  
sys tem in nonequil ibr ium sta t is t ical  mechanics .  The use  of the inequality T <<T is equivalent to cons ider -  
ing this sytem in the fami l ia r  random-phases  approximation.  Some examples  will be given to clar ify the 
mat te r .  Thus in the kinet ic  theory  of gases  the par t  of the t ime T is played by the t ime of establishing the 
state of molecular  chaos, that is,  the mean t ime  between success ive  coll isions of a molecule.  The random- 
phases  approximation is  equivalent in this case to the hypothesis  of molecu la r  chaos, and instead of the 
Liouville equation for  gas one is able to consider  the fami l ia r  Boltzmann equation. In the la t te r  case  all 
p r o c e s s e s  of durat ion ~ T a re  general ly  d i s regarded  (that is ,  one ignores  the so-ca l led  region of "molecu-  
l a r  noise"  due to local  infr ingements  of the molecular  state of chaos); for  this  reason  the equation which 
desc r ibes  nregular  n approximation of gas to the macroscop ic  state of maximal  entropy is not suitable for  
descr ibing the generat ion of fluctuations in gases.  In the theory  of Brownian motion the quantity T is iden- 
t i c s / w i t h  the t ime  during which a suspended par t i c le  undergoes seve ra l  molecular  impacts .  On the other  
hand, the pa r t  of the t ime  T is  played in these  sys tems  by the t ime of equalization of macroscopic  pa ram-  
e t e r s  ( tempera ture ,  density) of a gas in a physical ly small volume and aswel l  by the cha rac t e r i s t i c  r e -  
ta rdat ion t ime  of a Brownian par t i c le  due to the forces  of v iscous  in teract ion with the fluid, respect ively .  

In view of what was said above, the s tochast ic  equation for  8p (t, x) can be wr i t ten  as 

where  e ( t ,~  is  a random quantity whose spec t ra l  density is independent of the pulsat ion f requency w. 

Simi lar ly  as in (2.1) the random var iab les  will now be represen ted  by s tochast ic  Four ie r -S t i e l t j e s  
integrals :  

Inser t ing (3.6) in (3.5) one obtains 

[i0) + ( k D k -  r0(o2)] dZp = dZc (3.7) 

Hence one obtains the express ion  for the complete  spec t ra l  densi ty of the random p ro ces s  6p (t, x): 

~c,~ (k) ~F~.~ (k) = lira ~dZc*dze) (3.8) 
LX~p,~ (0), k) ~-~ o)~_~_ (kDk- Too)~) ~' d~, dk~o dk d(a 

By employing the obvious re la t ion 

CO 

~p, pi(k) = f ~p'p (o), k)d~o 
- - 0 0  

one obtains f rom (3.8) the represen ta t ion  

%,p (~, k) = ~Dk %,o (k) (3.'9) 

In the above ~P,P (k) is  the par t ia l  spect ra l  density ev~tluated in Section 2. The space- t ime  c o r r e l a -  
t ion function of the p r o c e s s  8p (t, x) is  expres sed  in the standard fo rm  

Rp.p (r r) • (Sp (t, x)59 (t + v, x + r)) = I I e~kr+~F0,p (co, k) d0) dk (3.10) 

Using (3.9) and (3.10), it  is  not difficult to calculate the quantity Tp appearing in (3.4). By using the 
fo rmula  (2.11) one obtains 

Tp ---- t Bp o (~, 0) d~ -- j ,kDk - -  
Bp,~; (0,0)_oo ' 
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Employing the r e su l t s  of [7], it can be a s sumed  that  the pseudoturbulence  of the phases  of a d i spe r se  
s y s t e m  has an axial  s y m m e t r y .  By adopting sui table coordinate  axes  and denoting in these  axes  the e igen-  
va lues  of the t e n s o r  D by D 1 and 13 2 = D 3 r e spec t ive ly  one obtains f r o m  (3.11) that  

Tp 3(1 +~,2) arctg y = (3.12) 
~ koCDi ' \Di--D~] 

It should be  emphas ized  that  in con t ras t  to  the s imul taneous  s ta t i s t i ca l  c h a r a c t e r i s t i c s  of concen t ra -  
t ion d i s tu rbances  which in accordance  with the r e su l t s  obtained in Sections t and 2 do not depend on the 
development  leve l  of the  pseudoturbulence  of a d i spe r s e  system, the quanti t ies by which the behav io r  of these  
d i s tu rbances  i s  cha r ac t e r i z ed  in t i m e  a re  re la ted  (via the coeff icients  of the pa r t i c l e  diffusion) to the in ten-  
s i ty of the pseudoturbulence.  

4. Genera l iza t ion  of P o l y d i s p e r s e  Sys tems .  Monodisperse  s y s t e m s  of p a r t i c l e s  which do not d i f fer  
f r o m  each other  have only so f a r  been cons idered  by us. In f a g ,  the p a r t i c l e s  may  dif fer  with r e spec t  to 
some  at t r ibute  (or at t r ibutes)  so that  in the d i spe r sed  phase  one has to d i f ferent ia te  between different  c o m -  
ponents  (fractions).  

F i r s t ,  it i s  a s sumed  that  the volume V is  occupied by pa r t i c l e s  of J dif ferent  f rac t ions ,  the total  n u m -  
b e r  of  p a r t i c l e s  of the j - th  type  being equal to nv(J) (subsequently,  all  quant i t ies  r e f e r r i n g  to such p a r t i c l e s  
c a r r y  a s u p e r s c r i p t  j). The  mean s ta te  of such a po lyd i spe r se  s y s t e m  can be desc r ibed  with the aid of the 
mean  volume concentra t ion p and of the pa r t i a l  concentra t ions  of  pa r t i c l e s  of different  types  p (J): 

• ~ n(,)~(J) ~ 0o) (4.i) P(J ) - - - -V- - - '  P =  Y ~-~ v = 
j--i i=i 

In p r inc ip le  the analys is  of f luctuations of the n u m b e r  of p a r t i c l e s  of different  types  in a vo lume 
A << V can be c a r r i e d  out using the method employed in [5]. Thus re la t ions  of the s ame  kind as  those  in the 
in t roductory  pa r t  a r e  obtained. However ,  in subsequent  cons idera t ions  only the d is t r ibut ions  of the num-  
b e r s  of p a r t i c l e s  in a sufficiently l a rge  volume A a r e  of in te res t  to us when (hA(J) > >> 1, [ ~nA(J)n/(nA(J)}[ << 
1 and when the equali ty 

3" - 1  ( # )  n~(i) n(~(0 ~ a(~) = ~ (4.2) 
P 

can be a s sumed  approx imate ly ,  where  a(J) i s  the spec i f ic  voIume content of the p a r t i c l e s  of the j - t h  f r a c -  
t ion in V. Employing the re la t ions  (4.2), one is  able to r e p r e s e n t  fo rma l ly  the volmne A as the sum of the 
vo lumes  A (j) = a (J) A such that  the pa r t i c l e s  of the j - th  type a re  found inside A(J) with v e r y  l a rge  probabi l i ty  
[see a lso  the dis t r ibut ion (0.3)]. In other  words ,  the volume A is  i n t e rp re t ed  as a superpos i t ion  of J la t t ices ,  
the vo lumes  of whose ce l l s  a r e  equal to a ( J ) / p . ,  t he i r  to ta l  n u m b e r  being 

/V O) = a 0 3 A P ,  
,(~) q = f, . . . ,  Y) (4.3) 

The  en t i re  vo lume V occupied by the d i spe r s e  s y s t e m  can be desc r ibed  in a s i m i l a r  manner .  If the 
cons idera t ions  in [5] a r e  r epea ted  word  for  word, the dis tr ibut ion is  obtained of the p a r t i c l e s  of the j - t h  
f rac t ion  in the f o r m  

~n03 vNO'h~ 
i --~ A- -  .~, (4.4) 

In the above the  quantity p, which t akes  the p lace  of v in (0.3), is given by  

<-~)> p <n<2> = ~x(~) (4.5) 

and is  the s a m e  for  pa r t i c l e s  of different  f rac t ions .  

Moreover ,  the d is t r ibut ion  of all  p a r t i c l e s  can be wr i t t en  as 

J 

w (d'  . . . . .  n2)  = E w 
j = l  

(4.6) 
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From (4.4) and (4.6) the relations 

<(hn(~)> = O, <(hn(j.))~> = v ( l  - -  v) N(~ ) = (4 - -  v) <n~)> (4 .7 )  

a re  obtained, which replace  (0.4). 

The functions ~(J) (x), p(J) (x) as well  as t he i r  va r iances  are  determined by analogy with (1.1)-(1.3)- 

i 
f 8 (x') d (x' - x ) ,  ~(,~ = 

0(]) 

P 

p(J) (x' - 4 x' x) (4.8) 
p 

The var iance  p (to, x),which is the sum ofpa r t i a l concen t ra t ions  (4.8),is equal to the sum of the v a r i -  
ances  p(J) (x) and can be expressed ,  as before ,  by the formula  (1.7). By making use of exact ly the same 
considerat ions as in Section 2 one a r r i ve s  at express ions  for  thepar t i a l  spec t ra l  densi t ies  which are of the 
same fo rm as the re la t ions  (2.3) and (2.11). By comparing the var iance  p(J) (x) calculated f rom the exp res -  
sions for  ~p(J!# (k) and the quantity (6p(J)2 (x)) of (4.8) one can de termine  the constants ~(J) and ~'(J) which 

appear  in them. In this  manner  one obtains two formulas  for  p (k) which cor respond to the formulas  

(2.3) and (2.11): 

ha~ ha(J) 3~(i) 
r (k) =  (J)p It  - • k.4J) 6OS 

' P* I (ha(i))' (4.9) 

~,p (k) = 4~ (h(j))3 I - -~-./ - k) 

The quantit ies a0(J) , k0(J) appearing in (4.9) a s  well as the volume a0(J) a re  determined,  as before ,  
f rom the consis tency of the express ion  for  the var iance  of the number  of pa r t i c les  of the j - th  type obtained 
f rom (4.9) and the re la t ions  (4.8). Then one has 

type.  
It is noted that 

v(0 i) a (i) = ~(i), a(i) = _  
P ~ ' ~-- a(D 

~0 (j) ~ A(J) in cont ras t  with descr ibing a d i sperse  sys tem with par t i c les  of the same 

The dynamics will now be considered of fluctuations of par t i a l  concentrat ions of par t ic les .  It is ob- 
vious that in the genera l  case it is not poss ible  for  a coordinate sys tem to be selected such that the mean 
values  of all the components of the d isperse  phase vanish simultaneously.  The veloci t ies  <w(J)) must 
t h e r e f o r e  be introduced,and the diffusion equations (3.1) replaced by the corresponding equations of convec-  
t ive diffusion for  pa r t i c les  of var ious  fract ions.  Then applying s imi la r  considerat ions , the  following r e l a -  
t ions for  the complete spec t ra l  densi t ies  a re  obtained: 

~F(j) ,0) k) _ ~)(~J.)p (k) ( i d~ )-i  
p,p x , - -  M (j) {(0, k )  _ ~  M (D (co, k )  (4.10) 

M 0) (co, k) = (~ -F < w(j)> k) ~ -F (kD(J)k -- T(J)r 2 

In conformity  with the re la t ion (3.4) fo r  a monodisperse  sys tem one can assume that the t imes  T,(J ) 
of (4.9) and (4.11) a re  approximately  equal to the t ime  scales  Tp(J) of the fluctuations 6p(J) (t, x). The ~latter 
can easi ly  be computed using a coordinate sys tem in which the veloci ty  of the mean motion of the par t i c les  
of the specif ied j - th  f ract ion is equal to zero.  One then comes to the conclusion that Tp(J) is given by means 
of the re la t ion  (3.12) with all quantities which descr ibe  the physical  p roper t i e s  and the par t ic le  diffusion 
ca r ry ing  the supersc r ip t  j. 

Now, let the pa r t i c l e s  of the d i sperse  phase be continuously dis t r ibuted in a p a r a m e t e r  (or pa ramete rs )  
denoted below by ~ .  In p rac t i ce ,  one has to deal mostly with the distr ibution of par t i c les  by the i r  size and 
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by t he i r  density. The  corresponding distr ibution function r (~) is introduced which is normal ized  on the 
total  volume concentrat ion p ,  that is ,  

I ~ (X) d~ -- p (4.11) 

If one considers  the par t i c les  whose p a r a m e t e r  X is in the in terval  (A, ~ + AX ) as belonging to some 
d i sc re te  fraction,  one can see that all the formulas  previously  obtained retain the i r  form if the index j is r e -  
p laced by a functional dependence of var ious  quantit ies on X [for example,  (r0) -~ ~ (~)] and p(J) is r e -  
placed by r (X) AX. Moreover ,  i f  one p roceeds  to  the l imit  AX-~ 0 and instead of d i sc re te  sequences of 
spec t ra l  densi t ies  one int roduces  the i r  densi t ies  in the space t ,  the following re la t ions  for  these  densi t ies  
a re  obtained: 

a (~.) 

- C O  

M (~o, k; ~) =~(o~ + <w> (~) k) 2 + (kD (~) k -- To (~) o)~) ~ 

(4.12) 

Neither  is it  difficult by using the re la t ions  (4.10) or  (4.12) to consider  var ious  co r r e l a t ion  functions 
which a re  two- t ime and two-point .  To this  end it suff ices to employ standard re la t ions  of the co r re l a t ion  
theory  of s ta t ionary random p r o c e s s e s .  
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